- Conducting oxide interfaces
- Infinite layer cuprates
- Infinite layer nickelates
- Light-matter coupling
- Nanoscale ferroelectric phenomena
- Neuromorphic computing
- Perovskite rare earth nickelates
- Perovskite rare earth vanadates
- Transmission electron microscopy
- Collaborations
- G. Scheerer et al.
Condensed Matter 5, 60 (2020) - A. Gloter et al.
APL Materials 8, 041103 (2020) - M. Caputo et al.
Physical Review Materials 4, 035001 (2020) - Weiwei Luo et al.
Nature Communications 10, 2774 (2019) - Margherita Boselli
Ph.D. Thesis , (2019) - S. Gariglio et al.
Reports on Progress in Physics 82, 012501 (2018) - D. Li et al.
Advanced Science , 1800242 (2018) - D. F. Valentinis et al.
Phys. Rev. B 96, 094518 (2017) - Davide Valentinis
Ph.D. Thesis , (2017) - S. Gariglo et al.
The Oxford Handbook of Small Superconductors Pt. I,. Ch. 7, (2017) - Danfeng Li
Ph.D. Thesis , (2016) - J.-Y. Chauleau et al.
European Physics Letters 116, 17006 (2016) - S. Gariglio et al.
APL Materials 4, 060701 (2016) - I. Pallecchi et al.
Physical Review B 93, 195309 (2016) - M. Boselli et al.
Applied Physics Letters 108, 061604 (2016) - S Gariglio et al.
Journal of Physics: Condensed Matter 27, 283201 (2015) - W. Liu et al.
APL Materials 3, 062805 (2015) - Ilaria Pallecchi et al.
Nature Communications 6, 6678 (2015) - S. Gariglio et al.
Physica C: Superconductivity and its Applications , (2015) - A. Fête et al.
Appl. Phys. Lett. 106, 051604 (2015) - D.Stornaiuolo et al.
Phys. Rev. B 90, 235426 (2014) - A Fête et al.
New Journal of Physics 16, 112002 (2014) - Alexandre Fête
Ph.D. Thesis , (2014) - Danfeng Li et al.
APL Materials 2, 012102 (2014) - C. Cancellieri et al.
Physical Review Letters 110, 137601 (2013) - M. Salluzzo et al.
Advanced Materials , (2013) - D. Stornaiuolo et al.
Applied Physics Letters 101, 222601 (2012) - A. Fête et al.
Physical Review B 86, 201105(R) (2012) - A. Filippetti et al.
Physical Review B 86, 195301 (2012) - M.L. Reinle-Schmitt et al.
Nature Communications 3, 932 (2012) - C. Cancellieri et al.
Physical Review Letters 107, 056120 (2011) - Stefano Gariglio et al.
Physics Viewpoint 4, 59 (2011) - Stefano Gariglio and Jean-Marc Triscone
Comptes Rendus Physique 12, 591-599 (2011) - Pavlo Zubko et al.
Annual Review of Condensed Matter Physics 2, 141-165 (2011) - A. Sambri et al.
Applied Physics Letters 98, 12903 (2010) - A. D. Caviglia et al.
Physical Review Letters 105, 236802 (2010) - Andrea Caviglia
Ph.D. Thesis , (2010) - C. Cancellieri et al.
Europhysics Letters 91, 17004 (2010) - A. D. Caviglia et al.
Physical Review Letters 104, 126803 (2010) - I. Pallecchi et al.
Physical Review B 81, 085414 (2010) - Nicolas Reyren
Ph.D. Thesis , (2009) - T. Schneider et al.
Physical Review B 79, 184502 (2009) - S. Gariglio et al.
Journal of Physics: Condensed Matter 21, 164213 (2009) - N. Reyren et al.
Applied Physics Letters 94, 112506 (2009) - S. Thiel et al.
Physical Review Letters 102, 046809 (2009) - A. D. Caviglia et al.
Nature 456, 624 (2008) - N. Reyren et al.
Science 317, 1196 (2007)
Conducting oxide interfaces
Main researchers: Margherita Boselli, Stefano Gariglio, Adrien Waelchli
The interface between SrTiO3 and a thin film of LaAlO3 hosts a conducting two dimensional electron system (2DES). The 2DES is confined in SrTiO3 within a few nm from its interface with LaAlO3, and originates from the polar discontinuity occurring when a polar insulating material, LaAlO3, is grown on top of a neutral one, SrTiO3.
LaAlO3/SrTiO3 heterostructures have been part of the scientific agenda of our group since the discovery of the conducting interface [1] and, in 2006, we showed that the 2DES is superconducting below ~300 mK [2] and that the superconductivity can be tuned by an external electric field [3]. Very interestingly, top-, back- and side-gates can modify the 2DES carrier density, carrier mobility and the strength of the spin-orbit coupling acting at the interface [4,5].
Our research is now focused on the properties of the 2DES at the nanoscale, on the interplay between superconductivity and ferroelectricity in SrTiO3 and on spintronic effects.

Left panel: Temperature behavior of the resistance at different back-gate voltages. By increasing the back-gate from -300 V to 320 V, the 2DES moves from a weak-localization regime to a superconducting phase. Right panel: Sheet resistance at 600 mK as a function of the back-gate plotted together with the superconducting transition temperature [3].
[1]. A. Ohtomo and H. Y. Hwang, Nature 427, (2004)
[2]. N. Reyren et al. Science 317, (2007)
[3]. A. Caviglia et al. Nature 456, (2008)
[4]. M. Ben Shalom et al. Phys. Rev. Lett. 104, (2010)
[5]. D. Stornaiuolo et al. Phys. Rev. B 90, (2014)