- Conducting oxide interfaces
- Infinite layer cuprates
- Infinite layer nickelates
- Light-matter coupling
- Nanoscale ferroelectric phenomena
- Neuromorphic computing
- Perovskite rare earth nickelates
- Perovskite rare earth vanadates
- Transmission electron microscopy
- Collaborations
- C. Weymann et al.
Advanced Electronic Materials , 2000852 (2020) - C. Weymann et al.
Applied Surface Science 516, 146077 (2020) - Christian Weymann
Ph.D. Thesis , (2019) - Stéphanie Fernandez
Ph.D. Thesis , (2017) - S. Fernandez-Peña et al.
APL Materials 4, 086105 (2016) - P. Zubko et al.
Nature 534, 524 (2016) - C. Lichtensteiger et al.
New Journal of Physics 18, 043030 (2016) - N. Balke et al.
Journal of Applied Physics 118, 071901 (2015) - P. Ghosez & J.-M. Triscone
Nature 515, 348–350 (2014) - C. Lichtensteiger et al.
Nano Letters 14, 4205−4211 (2014) - G. M. De Luca et al.
Applied Physics Letters 103, 062902 (2013) - Pavlo Zubko et al.
Annual Review of Materials Research 43, 387 (2013) - P. Zubko et al.
Ferroelectrics 433, 127-137 (2012) - Céline Lichtensteiger et al.
Oxide Ultrathin Films: Science and Technology , Chapter 12 (2012) - P. Zubko et al.
Nano Letters 12, 2846-2851 (2012) - A. Sambri et al.
Smart Materials Research vol. 2012, Article ID 4260 (2012) - Almudena Torres-Pardo et al.
Physical Review B 84, 220102 (2011) - C. Lichtensteiger et al.
WILEY ISBN: 978-3-527, Ch. 12 (2011) - Philippe Ghosez & Jean-Marc Triscone
Nature Materials 10, 269-270 (2011) - F. Le Marrec; H. Toupet; C. Lichtensteiger; B. Dkhil; M. G. Karkut
Phase Transitions 84, Issue 5, 453-473 (2011) - P. Zubko et al.
Physical Review Letters 104, 187601 (2010) - J. Guyonnet et al.
Applied Physics Letters 95, 132902 (2009) - Pavlo Zubko et al.
Nature, News and Views 460, 45-46 (2009) - Matthew Dawber et al.
Phase Transitions 81, 623 (2008) - M. Dawber et al.
Journal of Physics: Condensed Matter 20, 264015 (2008) - Nicolas Stucki
Ph.D. Thesis , (2008) - E. Bousquet et al.
Nature 452, 732 (2008) - M. Dawber et al.
Advanced Materials 19, 4153 (2007) - K. M. Rabe et al.
Topics in applied physics 105, 1-30 (2007) - C. Lichtensteiger et al.
Topics in applied physics 105, 305-338 (2007) - P. Paruch et al.
Topics in applied physics 105, 339-362 (2007) - S. Gariglio et al.
Applied Physics Letters 90, 202905 (2007) - C. Lichtensteiger et al.
Applied Physics Letters 90, 052907 (2007) - Céline Lichtensteiger
Ph.D. Thesis , (2006) - L. Despont et al.
European Physical Journal B 41, 141-146 (2006) - L. Despont et al.
Physical Review B 73, 094110 (2006) - K. S. Takahashi et al.
Nature 441, 195 (2006) - Céline Lichtensteiger and Jean-Marc Triscone
Javier Junquera and Philippe Ghosez
Physical Review Letters 94, 047603 (2005) - P. Paruch et al.
Physical Review Letters 94, 197601 (2005) - M. Dawber et al.
Physical Review Letters 95, 177601 (2005) - M. Dawber et al.
Reviews of Modern Physics 77, 1083 (2005) - Patrycja Paruch
Ph.D. Thesis , (2005) - C. H. Ahn et al.
Science 303, 488 (2004) - P. Paruch et al.
MaNEP Newsletter 6, 6 (2004) - C. Lichtensteiger and J.-M. Triscone
Integrated Ferroelectrics 61, 143 (2004) - A. K. Sarin Kumar et al.
Applied Physics Letters 85, 10 (2004) - T. Tybell et al.
Physical Review Letters 89, 097601 (2002) - P. Paruch et al.
Applied Physics Letters 79, 530 (2001) - T. Tybell et al.
Applied Physics Letters 75, 856 (1999) - C.H. Ahn et al.
Mat. Res. Soc. Symp. Proc. 493, 291 (1998) - T. Tybell et al.
Helvetica Physica Acta 71, S1 (1998) - C.H. Ahn et al.
SPIE 3481, 135 (1998) - T. Tybell et al.
Applied Physics Letters 72, 1454 (1998) - C.H. Ahn et al.
Science 276, 1100 (1997) - T. Tybell et al.
Le Vide 53, 48 (1997) - C.H. Ahn et al.
Journal of Low Temperature Physics 105, 1517 (1996) - M. Foeth et al.
Proceedings of the EUREM’96 Conference , (1996) - M. Foeth et al.
Helvetica Physica Acta 69, Sep. 1 (1996) - C.H. Ahn et al.
Science 269, 373 (1995)
Nanoscale ferroelectric phenomena
Main researchers: Marios Hadjimichael, Céline Lichtensteiger
Ferroelectrics are materials exhibiting a remanent polarisation that can be switched by applying an electric field. Ferroelectric materials are also pyroelectric and piezoelectric, and are useful for a wide range of technological applications, from non-volatile memories to sensors and actuators. These materials can consist of regions where the polarisation points in different directions, and each region with a uniform polarisation is called a domain. Recent years have seen a resurgence of interest in domains in ferroelectric materials, mostly due to the properties of their boundaries, domain walls. Domain walls have been shown to enhance the macroscopic properties of ferroelectrics, like the piezoelectric coefficient and the permittivity, but they also exhibit properties and symmetry different from the bulk. This recent interest has now created an entire new field of study in nanoscale ferroelectrics, termed domain wall nanoelectronics, with a worldwide scientific effort focused on understanding the structure and properties of domain walls, as well as utilizing them as novel components in electronic devices [1].
In Geneva, we have been working on the study of ferroelectric films and heterostructures for many years with a long-standing expertise in size effects and ferroelectric field effect [2], a well-established expertise in studying PbTiO3 films and multilayers on SrTiO3 [3], with detailed studies on the scaling of the ferroelectric polarization and the monodomain to polydomain transition in ultrathin PbTiO3 films [4], artificially induced hybrid improper ferroelectricity [5] and negative capacitance in PbTiO3/SrTiO3 superlattices [6].

The depolarization field arising from unscreened bound charges on the surface of the ferroelectric is generally strong enough to suppress the polarization completely and hence must be reduced in one of a number of ways [7].
[1]. G Catalan et al, Rev. Mod. Phys. 84, (2012)
[2]. C. H. Ahn et al, Science 80, (1997)
[3]. C. Lichtensteiger et al, Phys. Rev. Lett. 94, (2005)
[4]. C. Lichtensteiger et al, Nano Lett. 14, (2014)
[5]. E. Bousquet et al, Nature 452, (2008)
[6]. P. Zubko et al, Nature 534, (2016)
[7]. C. Lichtensteiger et al, Ch 12, Oxide Ultrathin Films, Science and Technology, Wiley (2011)