- Conducting oxide interfaces
- Infinite layer cuprates
- Infinite layer nickelates
- Light-matter coupling
- Nanoscale ferroelectric phenomena
- Neuromorphic computing
- Perovskite rare earth nickelates
- Perovskite rare earth vanadates
- Transmission electron microscopy
- Collaborations
- I. Ardizzone et al.
Physical Review B 102, 155148 (2020) - C. Dominguez et al.
Nature Materials , (2020) - K. R. Beyerlein et al.
Physical Review B 102, 014311 (2020) - A. Schober et al.
APL Materials 8, 061102 (2020) - J. Li et al.
Nature Communications 10, 4568 (2019) - J. Fowlie et al.
Nano Letters 19, 4188-4194 (2019) - J. Fowlie
Ph.D. Thesis , (2018) - S. Catalano et al.
Reports on Progress in Physics 81, 046501 (2018) - J. Fowlie et al.
Advanced Materials , 1605197 (2017) - S. Catalano
Ph.D. Thesis , (2017) - F. Y. Bruno et al.
APL Materials 5, 016101 (2017) - G. Matoni et al.
Nature Communications 7, 13141 (2016) - V. Bisogni et al.
Nature Communications 7, 13017 (2016) - M. Gibert et al.
Nature Communications 7, 11227 (2016) - W. Hu et al.
Physical Review B 93, 161107 (2016) - J. Ruppen et al.
Phys. Rev. B 92, 155145 (2015) - M. Gibert et al.
Nano Letters 15, 7355 - 7361 (2015) - C. Piamonteze et al.
Physical Review B 92, 014426 (2015) - M. Först et al.
Nature Materials 14, 883–888 (2015) - S. Catalano et al.
APL Materials 3, 062506 (2015) - S. Catalano et al.
APL Materials 2, 116110 (2014) - A. D. Caviglia et al.
Physical Review B 88, 220401 (2013) - R. Scherwitzl
Ph.D. Thesis , (2012) - A. D. Caviglia et al.
Physical Review Letters 108, 136801 (2012) - M. Gibert et al.
Nature Materials 11, 195–198 (2012) - R. Scherwitzl et al.
Physical Review Letters 106, 246403 (2011) - R. Scherwitzl et al.
Advanced Materials 22, 5517 (2010) - R. Scherwitzl et al.
Applied Physics Letters 95, 222114 (2009)
Perovskite rare earth nickelates
Main researchers: Claribel Dominguez, Jennifer Fowlie
Perovskite rare earth nickelates (RNiO3) have a rich phase diagram generated by changing the rare earth cation, R. The primary effect of this is to distort the structure, bending the nickel-oxygen-nickel bond angle. The exchange of one rare earth for another tunes the magnetic and electronic phases through a lattice distortion [1,2].
Much of the interest in nickelates is focused on predictions of high temperature superconductivity [3], their unusual antiferromagnetic order [4] and their sharp and highly controllable metal-insulator transition.
In Geneva we synthesise nickelate-based heterostructure as a base to study their intrinsic physics as well as to engineer novel properties arising from heterostructure effect such as unique magnetic structures, exchange bias and strain-, field- and light-tuning of the electronic state [5].

Bulk phase diagram of the perovskite nickelates RNiO3 showing how the metal-insulator transition and paramagnetic-antiferromagnetic transition can be tuned in temperature by rare earth cation size.
[1]. M. Medarde, Journal of Physics: Condensed Matter 9, (1997)
[2]. G. Catalan, Phase Transitions 81, (2008)
[3]. J. Chaloupka and G. Khaliullin, Phys. Rev. Lett. 100, (2008)
[4]. V. Scagnoli et al, Phys. Rev. B 73, (2006)
[5]. S. Catalano et al, Reports on Progress in Physics 81, (2018)