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Hall response of locally correlated two-dimensional electrons at low density
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We study the Hall constant in a homogeneous two-dimensional fluid of correlated electrons immersed in
a perpendicular magnetic field, with special focus on the regime of low carrier density. The model consists
of a one-band tight-binding model and a momentum-independent causal self-energy, representing interaction-
induced correlations effects that are restricted to be local in space. We write general gauge-invariant equations for
the conductivity tensor at first order in the magnetic field and solve them numerically—–analytically when
possible—in a minimal model of anisotropic square lattice with constant self-energy. Our results show that
deviations from the universal behavior of the Hall constant, as observed in the semiclassical regime, appear upon
entering the quantum regime, where the Fermi energy and interaction are comparable energy scales.
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I. INTRODUCTION

In the wake of graphene’s discovery [1], the study of
gated two-dimensional (2D) semiconductors has developed
swiftly, providing a whole family of new low-density con-
ductors. The achievable carrier concentrations are sufficiently
low—–as low as 1010–1011 cm−2—to even realize the elu-
sive interaction-dominated Wigner crystal [2–4]. In gated
moiré heterostructures, recent experiments have provided a
wealth of transport data in the low-density regime, even
through density-controlled metal-insulator transitions [5]. In
recent years, 2D magnetic insulators and conductors have
been uncovered as well [6,7], some of which like CrSBr dis-
play puzzling magnetotransport properties [8]. This situation
prompts further theoretical research on the magnetotransport
in 2D correlated conductors at low carrier densities.

Doing so is not easy, since one needs to properly describe
assemblies of charge carriers in a regime where Fermi energy,
scattering rate, and temperature are comparable energy scales.
This means that some of the usual approximations such as the
Boltzmannian semiclassical theory [9] cannot be applied. This
theory indeed regards carriers as true particles characterized
by well-defined energy and momentum and subject to Fermi
statistics. However, this semiclassical description reaches its
limits when the quasiparticle scattering rate is not small com-
pared to either the quasiparticle energy—–i.e., typically kBT ,
where T is the temperature—or the effective Fermi energy,
which is proportional to the carrier density. In this case, the
spectral function of the electrons is broad and one must use the
quantum theory [10,11]. However, the general first-principles
many-body approach poses considerable computational chal-
lenges and progress has been difficult.
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For high densities, the Hall response of correlated electrons
was studied in the Hubbard model using exact numerical
methods on small systems [12,13] or approximate methods
[14–16], both at weak [12–14] and strong magnetic field
[15,16]. Progress could be made for interacting systems in
special situations such as quasi-one-dimensional systems,
made of weakly coupled, strongly interacting chains [17–19]
or, more recently, for ladders for which the Hall effect can
be accessed both numerically and analytically [20–22] and
probed in cold atomic gases experiments [23].

Extending such methods to the case of vanishing low
densities would be highly nontrivial, so we follow here an-
other route: we neglect the nonlocal correlations between
the charge carriers. At the single-particle level, this means
that the electrons are characterized by a dispersion relation
Ek and a complex self-energy function �(ε) that is local
(independent of k), like in the dynamical mean-field theory
[24]. The absence of vertex corrections, both at zero [25]
and finite magnetic field [15,16], simplifies the calculation
of the conductivities significantly. This class of models thus
provides an interesting playground, intermediate between the
approximate semiclassical theory and the intractable quantum
theory, where the magnetotransport can be studied accurately
in the thermodynamic limit. In this approach, the self-energy
may be regarded as a phenomenological input or taken from a
microscopic calculation.

In the present paper, we use this local self-energy approach
to study the Hall effect in systems with low densities. The
plan of the paper is as follows. In Sec. II, we present general
gauge-invariant transport equations that capture the dc Hall
response of a 2D single-band tight-binding model of locally
correlated electrons. Given a dispersion relation and a causal
self-energy, the transport equations can be solved numerically
in all regimes of density and temperature. In Sec. III, we solve
these equations in a minimal model, where the correlations are
represented by a single scattering rate �. The simplicity of the
model allows us to obtain exact asymptotic results, in particu-
lar, in the low-density regime. We compare the resulting Hall
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FIG. 1. We consider a two-dimensional tight-binding model with
direction-dependent hopping amplitudes tx , ty and a magnetic field B
along the z direction. We pass a current I along the x direction and
measure the created electric field (Hall effect) along the direction
y. Furthermore, we make the assumptions that interactions in the
system can only lead to local correlations and thus a self-energy �(ε)
depending only on the energy ε.

constant RH with the universal value R0
H = −1/(n|e|). Quite

remarkably, we find that in the model with a self-energy hav-
ing neither momentum nor energy dependence, the Hall effect
at low density is enhanced to four times the semiclassical re-
sult. Moreover, we find a nonmonotonic evolution of the Hall
factor with a pronounced maximum when the temperature is
raised to values larger than the scattering rate. This effect is
most pronounced at low density, large scattering rate, and for
a strongly anisotropic (quasi-one-dimensional) Fermi surface.
We discuss further our findings in Sec. IV. Some of the more
technical points can be found in the Appendices.

II. SYSTEM STUDIED AND TRANSPORT EQUATIONS

A. Model Hamiltonian and Green’s function

We study a 2D interacting one-band tight-binding model
without spin-orbit coupling immersed in a perpendicular mag-
netic field B as shown in Fig. 1. Its Hamiltonian is

H =
∑
r1r2σ

t0
r1r2

ei |e|
h̄

∫ r2
r1

dr·A(r)c†
r1σ

cr2σ
+ Hint, (1)

where t0
r1r2

≡ t0
r1−r2

is the translation-invariant zero-field hop-
ping amplitude from site r1 to site r2 of the lattice, c†

rσ , crσ
are the creation and annihilation operators at site r for spin
σ , and A is the vector potential, which enters via the Peierls
substitution. This Hamiltonian leads to a dispersion relation
Ek = ∑

ρ t0
ρ e−ik·ρ at B = 0, where k is a wave vector and ρ is

a vector linking two sites in the lattice. Although the model
can be totally generic, we specialize in the applications that
follow to a 2D anisotropic square lattice, which means that
t0
ρ will become, for nearest-neighbors tx and ty, depending

on the direction of the coupling. This anisotropy defines the
smallest hopping as one additional energy scale that can be
tuned to be comparable with either Fermi energy, scattering
rate, or temperature. In this way, we scan a class of geometries
ranging from the quasi-1D case to the 2D case (isotropic
hoppings).

Moreover, we assume throughout this paper that the in-
teractions between particles, described by a Hamiltonian
Hint , lead only to local correlations and therefore to a local

self-energy in zero magnetic field. The self-energy �(ε) thus
depends only on the energy ε and not on the direction and
size of the momentum. As a consequence, the direction of the
group velocity is not modified by interactions, which in the
diagrammatic language can be seen as the absence of vertex
corrections.

Using this self-energy allows us to define the zero-
field spectral function A(k, ε) = (−1/π )Im G(k, ε), where
the single particle Green’s function is G(k, ε) = [ε − Ek −
�(k, ε)]−1. For a local self-energy �(ε), the spectral function
only depends on k through Ek and it is convenient to define
A(k, ε) ≡ A(Ek, ε) with

A(E , ε) = −Im �(ε)/π

[ε − E − Re �(ε)]2 + [Im �(ε)]2
. (2)

Thus, in our notations, the variable E refers to an energy shell
of the noninteracting dispersion, while the variable ε refers
to the energy axis, over which the electron spectral weight is
redistributed by the correlations encoded in �(ε).

Note that our model is characterized only by the dispersion
relation Ek, which is linked to the geometry of the system,
and the self-energy �(ε), which encodes possible interactions
and disorder. As a consequence, the conductivity will also be
a function of only Ek and �(ε). Note also that Eq. (2) is not
applicable in a finite field, where the self-energy acquires an
essential momentum dependence associated with the fractal
Hofstadter spectrum [26]. As we discuss in Appendix A, since
the Hofstadter spectrum is even in B, Eq. (2) is sufficient to
evaluate perturbatively any property up to first order in B.

B. Self-consistent chemical potential

In the low-density limit that we study, and especially when
the Fermi energy (i.e., some measure of the particle or hole
density) is comparable with temperature and/or scattering
rate, the precise knowledge of the chemical potential is cru-
cial. We will compute it self-consistently using the relation

n =
∫ ∞

−∞
dε f (ε − μ)

∫ ∞

−∞
dE N0(E )A(E , ε), (3)

where f (ε) = (eε/kBT + 1)−1 is the Fermi-Dirac distribution,
A(E , ε) is the spectral function defined previously in Eq. (2),
and N0(E ) is the noninteracting density of states (DOS),
which for a 2D band of spin-1/2 electrons is given by

N0(E ) = 2
∫

d2k

(2π )2
δ(E − Ek). (4)

The quantity N (ε) = ∫ ∞
−∞ dE N0(E )A(E , ε) in Eq. (3) is the

interacting DOS. N (ε) is, in general, nonzero outside the
noninteracting band. As a result, the chemical potential may
move below the noninteracting band at low electron density
(above it at low hole density), even at zero temperature.

C. Hall constant

The Hall effect is the appearance of an electric field in the
direction transverse to the current, which defines a transverse
resistivity according to Ey = ρyxJx. In the presence of nontriv-
ial topology or broken time-reversal symmetry, an anomalous
Hall effect occurs in zero magnetic field [27]. The models
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considered in this paper are space- and time-inversion sym-
metric and have no spin-orbit coupling, and are therefore
characterized by an ordinary Hall response, i.e., a resistivity
ρyx(B) proportional to B. The Hall constant is then defined
as RH = limB→0 ρyx(B)/B. The transverse resistivity is related
to the conductivity via ρyx = σxy/(σxxσyy + σ 2

xy), where the
property σyx = −σxy has been used [28]. An ordinary Hall
response also implies that the correction to σxx and σyy is
quadratic in B. Hence, the conductivity tensor has the structure

σαβ (B) = δαβσ (0)
α + (1 − δαβ )σ (1)

αβ B + O(B2). (5)

Using this, we obtain a representation of the Hall constant in
terms of the expansion coefficients σ (0)

α and σ (1)
xy :

RH = lim
B→0

1

B

σxy

σxxσyy + σ 2
xy

= σ (1)
xy

σ
(0)
x σ

(0)
y

. (6)

Following Ohm’s law, σαβ gives the linear response to the
electric field and must therefore be calculated at vanishing
electric field. In the next section, we first write expressions
for σαβ that contain all orders in the magnetic field B using the
Kubo formula. We then perform an expansion in B to extract
σ (0)

α and σ (1)
xy .

D. dc limit of the Kubo conductivity tensor

The macroscopic (i.e., q = 0 or spatially averaged) com-
plex ac conductivity at frequency ω is given by the Kubo
formula [29]:

σαβ (ω) = i

ω

1

V

[
CR

JαJβ
(ω) − CR

JαJβ
(0)

]
. (7)

In this expression, Jα is the macroscopic current operator in
the direction α (given in Appendix A) and CR

JαJβ
(ω) is the

retarded current-current correlation function:

CR
JαJβ

(ω) =
∫ ∞

−∞
dt eiωt (−i/h̄)θ (t )〈[Jα (t ), Jβ (0)]〉. (8)

This is an extensive quantity that is divided by the volume V —
the surface, in our 2D case—to yield an intensive conductivity.
The second term in Eq. (7) is the diamagnetic response, which
is real in normal metals and ensures that the dc conductivity
is finite.

Our target is the dc conductivity that is purely real and
relates to the imaginary part of the correlation function:

σαβ = lim
ω→0

Re σαβ (ω) = − lim
ω→0

1

ω
Im

1

V
CR

JαJβ
(ω). (9)

To evaluate σαβ , we express the currents in terms of the
operators c†

rσ and crσ and, thanks to the absence of vertex
corrections, recast the correlation function as an expression
involving only the interacting single-particle Green’s func-
tion. The latter is neither gauge- nor translation invariant in
the presence of a magnetic field. Nevertheless, the correla-
tion function is brought to a manifestly gauge-invariant form
after introducing a modified gauge- and translation-invariant
Green’s function. The details are given in Appendix A.

The resulting expression of the current-current correlation
function involves a transport function αβ that depends on Ek

but not on �(ε), analogous to the DOS in Eq. (4), and the

spectral function Eq. (2) that depends on �(ε) but not on Ek:

CR
JαJβ

(ω) = V
∫ ∞

−∞
dε1dε2

f (ε1 − μ) − f (ε2 − μ)

h̄ω + ε1 − ε2 + i0

×
∫ ∞

−∞
dE1dE2 αβ (E1, E2, B)A(E1, ε1)A(E2, ε2).

(10)

The number of energy integrals is doubled with respect to
Eq. (3), reflecting the occurrence of two current operators.
This is also the case for the transport function, which now
involves two momentum sums:

αβ (E1, E2, B) = −
( e

h̄

)2 1

V

∑
kqσ

δ
(
E1 − Ek− q

2

)
δ
(
E2 − Ek+ q

2

)
×

∑
ρ1ρ2

ρ1αt0
ρ1

ei(k+q/2)·ρ1ρ2βt0
ρ2

ei(k−q/2)·ρ2

× 1

N

∑
r

eiq·re
i|e|
2h̄ B·r×(ρ1−ρ2 ). (11)

Although the transport function contains all orders in B,
Eq. (10) is not valid to all orders in B, as it misses the Landau-
level physics. On a lattice, this breaks the spectral function
into a nonperturbative fractal Hofstadter spectrum [26]. It is
nevertheless possible to show that the variation of the spectral
function is quadratic in B (Appendix A). Therefore, Eqs. (10)
and (11) are valid at first order in B.

The dc limit of the conductivity involves the imaginary part
of CR

JαJβ
(ω), which lets two terms appear. The first combines

−πδ(h̄ω + ε1 − ε2) from the imaginary part of the retarded
energy denominator in Eq. (10) with the real part of the trans-
port function. This term denoted σ

(e)
αβ (B) is even in B and reads

σ
(e)
αβ (B) = π h̄

∫ ∞

−∞
dε [− f ′(ε − μ)]

×
∫ ∞

−∞
dE1dE2 Re αβ (E1, E2, B)

× A(E1, ε)A(E2, ε), (12)

where f ′ denotes the energy derivative of f . It is a
Fermi-surface or on-the-energy-shell contribution, due to
the factor − f ′(ε − μ) that constrains the energy ε to remain
within a few kBT around the chemical potential.

The second term involves the principal value of the energy
denominator and the imaginary part of the transport function.
Upon expanding 1/(h̄ω + ε1 − ε2) for ω → 0, a contribution
proportional to 1/(ε1 − ε2) appears. This part is identically
zero by symmetry, due to the fact that the imaginary part of
the transport function is odd under the exchange of E1 and
E2. The subsequent term of the expansion is −h̄ω/(ε1 − ε2)2,
which once inserted in Eq. (9) yields a well-behaved limit that
is odd in B and is denoted σ

(o)
αβ (B):

σ
(o)
αβ (B) = h̄

∫ ∞

−∞
dε1dε2

f (ε1 − μ) − f (ε2 − μ)

(ε1 − ε2)2

×
∫ ∞

−∞
dE1dE2 Im αβ (E1, E2, B)

× A(E1, ε1)A(E2, ε2). (13)
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Unlike σ
(e)
αβ (B), this appears to be an off-the-energy-shell term

with the energies ε1 and ε2 allowed to take values far away
from the chemical potential.

E. Expansion for weak field

The transport function in Eq. (11) contains all the
magnetic-field dependence but it is cumbersome for numerical
evaluation. We therefore consider its expansion in powers of
B. The zero-field limit is easy to grasp: the r sum forces q
to vanish, which in turn forces E1 and E2 to be equal; the
remaining ρ1 and ρ2 sums yield derivatives of the dispersion
Ek. As a result, the transport function is real and Eq. (12)
yields the first coefficient appearing in Eq. (5):

σ (0)
α = π h̄

∫ ∞

−∞
dε [− f ′(ε − μ)]

×
∫ ∞

−∞
dE (0)

α (E )A2(E , ε), (14)

(0)
α (E ) =

( e

h̄

)2
2

∫
d2k

(2π )2

(
∂Ek

∂kα

)2

δ(E − Ek). (15)

Details are provided in Appendix B. The interpretation of
this formula is that the dc conductivity is controlled by zero-
energy electronic transitions close to the chemical potential.
On every shell of energy E , the transitions are weighted by
the transport function, which is proportional to the squared α

component of the group velocity averaged on that shell, and
by the square of the spectral function, which sets the amount
of electronic spectral weight available for the initial and final
states of the transition.

At first order in B, the transport function is imaginary and
we only get a contribution from Eq. (13). Remarkably, we find
that the off-shell character of this term is not fundamental,
as the expression can be recast exactly in an on-shell form
(Appendix B):

σ (1)
xy = h̄

∫ ∞

−∞
dε [− f ′(ε − μ)]

∫ ∞

−∞
dE (1)(E )A3(E , ε)

(16)

(1)(E ) =
( |e|

h̄

)3 2π2

3

∫
d2k

(2π )2

[
2
∂Ek

∂kx

∂Ek

∂ky

∂2Ek

∂kx∂ky

−
(

∂Ek

∂kx

)2
∂2Ek

∂k2
y

−
(

∂Ek

∂ky

)2
∂2Ek

∂k2
x

]
δ(E − Ek).

(17)

The transformation from off-shell form to on-shell form relies
explicitly on the causal character of the spectral function,
which in turns requires the causality of the self-energy. The
latter must therefore respect the Kramers–Kronig relations.
We have not been able to bring the full Eq. (13) to on-shell
form, a frustration that has already been expressed in the
literature [11].

Let us make some comments on our results and, in particu-
lar, the expression for σ (1)

xy , in connection with previous works.
Our derivation recovers some known results that are scattered
across the relevant literature, but proceeds differently from
previous works. In Refs. [10,11,30–32], the limit of vanishing

magnetic field is taken from the outset, before the dc limit,
which allows the authors to relate the Hall response with a
three-current correlation function. Within the family of locally
correlated models, the dc limit can be taken before expanding
in powers of the magnetic field. The resulting expression for
the transverse conductivity is off-shell, as found by other au-
thors [11,15,16]. As we showed, at first order in the magnetic
field, this apparently off-shell contribution can be rigorously
recast, after the expansion in B, as a on-shell expression in-
volving the third power [14,30–32] of the spectral function in
Eq. (16), which is reminiscent of the three-current correlation
function that characterizes the transverse response when the
low-field expansion is performed before taking the dc limit
[10,11,30]. This equivalence relies explicitly on the causality
of the self-energy function.

Second, the average between the x and y directions appear-
ing at the second line of Eq. (17) reflects the gauge invariance
of the formula and is crucial in our anisotropic setting. Related
expressions based on the Boltzmann theory in the literature
lack this symmetrization and should therefore be corrected for
anisotropic systems [9,33,34]. In Appendix C, we show how
to recover from Eqs. (14)–(17) the Boltzmann theory in the
isotropic relaxation-time approximation.

III. RESULTS FOR THE ANISOTROPIC SQUARE LATTICE

Results are presented here for the Hall constant of the
anisotropic tight-binding model depicted in Fig. 1, with a
special emphasis on the regime of low electron density. For the
self-energy, we use the simplest causal model, �(ε) = −i�,
which represents quasiparticles with an energy-independent
relaxation time τ = h̄/(2�). While elementary, this model
has two advantages. It contains a single energy scale to
describe the scattering, like the semiclassical theory in the
isotropic relaxation-time approximation, such that differ-
ences between the quantum and semiclassical approaches
cannot be ascribed to differences in the scattering. Further-
more, it allows for a better numerical control, as certain
integrals can be performed exactly (see Appendix D and
Ref. [35]). This same model of scattering was used in recent
studies of the Hall response in multiband systems [32,36–38].

One peculiarity of this self-energy is that the spectral
function—and a fortiori the interacting DOS—have ∼1/ε2

tails without low- or high-energy cutoff. Consequently, the
chemical potential is also unbounded in the limit of vanishing
density, even at zero temperature. Microscopic lattice models
generally have self-energies with a finite support, possibly
different from the support of the noninteracting band. The
low-density behavior of RH may depend on the details of the
self-energy in nontrivial ways, and additional work is needed
to determine how the results presented here would change if a
cutoff were introduced in the self-energy.

A. DOS and transport functions

Before discussing the conductivities, we briefly describe
the DOS and the transport functions of the system sketched in
Fig. 1. The DOS is displayed in Fig. 2(a) for ty/tx = 0.1. It is
particle-hole symmetric with a half-bandwidth D = 2(|tx| +
|ty|). There are two logarithmic van Hove singularities at
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FIG. 2. (a) Density of states, (b) zeroth-order transport func-
tions, and (c) first-order transport function for the model shown in
Fig. 1 with ty/tx = 0.1. Energies are measured in units of tx and
a = axay is the area of the unit cell. The dashed lines show the
leading behavior close to the band edge E = −D, i.e., N0(E ) =
1/(2πa

√|txty|), (0)
α (E ) = (e/h̄)2(a2

α/a)|tα|/
√|txty| 1

π
(E + D), and

(1)(E ) = −(|e|/h̄)3a
√|txty| 4π

3 (E + D).

energies ±2(|tx| − |ty|) that merge into one in the isotropic
2D case and become two square-root singularities at the band
edges in the 1D case. The graph of (0)

α (E ) is displayed in
Fig. 2(b). Like the DOS, it is particle-hole symmetric. Where
the DOS has van Hove singularities, it displays logarithmic
singularities of the first derivative. Figure 2(c) shows (1)(E ),
that is odd for the model of Fig. 1, which is consistent with
the fact that the Hall constant must vanish at half filling in
particle-hole symmetric systems. Interestingly, we find that
(1)(μ) is equal to (|e|/h̄)3(4�2/3)Al , where Al is the Stokes
area introduced by Ong [34] if the latter is calculated for an
isotropic scattering time τk = h̄/(2�).

B. Zero-temperature Hall constant

The strength of nonclassical effects may be quantified by
comparing the Hall constant RH with the universal value R0

H =
−1/(n|e|). Even in the semiclassical regime, band-structure
effects are known to reduce the Hall factor r = RH/R0

H to
values smaller than unity [34]. For nearly free electrons,
Ref. [10] found that the momentum dependence of the

FIG. 3. Zero-temperature Hall constant in the anisotropic square
lattice with ty = 0.01tx and � = 0.1tx . Dotted lines show Eq. (18)
and nc indicates Eq. (20). The inset highlights the behavior at low
electron density. a is the area of the unit cell.

self-energy renormalizes the Hall constant by a factor r =
(N0/N )2, with N0 and N the bare and renormalized Fermi-
level densities of states, which is also generally smaller than
unity. Another finding of Ref. [10] was that the energy depen-
dence of the self-energy yields no renormalization of the Hall
constant.

For our model, Fig. 3 shows a typical evolution of the
Hall constant with varying carrier density at T = 0 for param-
eters ty/tx = 0.01 and �/tx = 0.1. RH is negative (positive)
for electron (hole) conduction and diverges at low electron
or hole density. It vanishes at n = 1 due to the particle-hole
symmetry of the model. At low electron/hole density, the
divergences seen are expected from the semiclassical theory,
which predicts −1/n, respectively, 1/(2 − n) behavior. How-
ever, a closer inspection reveals that the divergence is four
times faster than the semiclassical prediction (see inset of
Fig. 3). A Hall factor r higher than unity is normally not
expected [10,34]. Here, the value r = 4 occurs in the quantum
regime, where the semiclassical assumption of sharp quasipar-
ticles is no longer justified.

To better understand the low-density asymptotic behaviors
in these two regimes, we consider first the semiclassical case
by taking the limit � → 0+ in the transport equations at T =
0 (see Appendix E 1). We find the Hall constant

RH = 3

2π2h̄

(1)(μ)


(0)
x (μ)(0)

y (μ)
(T = 0, � → 0). (18)

This result simplifies even further in the limit of low density:
As n approaches zero, the chemical potential approaches the
lower band edge, where the DOS becomes constant and the
transport functions vanish linearly (see Fig. 2). We can there-
fore substitute in Eq. (18) the limiting expressions given in the
legend of Fig. 2 and use the limiting value of the density n =
N0(−D)(μ + D), which yields the semiclassical result R0

H =
−1/(|e|n). Away from the band edge, RH as given by Eq. (18)
is smaller than R0

H, irrespective of the anisotropy ty/tx. This
is consistent with the expectation that band-structure effects
reduce the Hall constant in the semiclassical approximation
[34]. The full semiclassical result of Eq. (18) is displayed in
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FIG. 4. Hall factor r = RH/R0
H (left axis) and chemical potential

(right axis) versus electron density at T = 0 for ty/tx = 0.1 and
�/tx = 0.004.

Fig. 3 as dotted lines, to be compared with the full quantum
result obtained using Eqs. (6) and (14)–(17).

Instead, in the quantum regime, one must keep � finite
while taking the limit n → 0. Due to the ∼1/ε2 tails of the
interacting DOS, this implies sending μ to −∞. We find that
μ ∝ −�/n as n → 0 (see Appendix E 1). At the same time,
the normal and Hall conductivities behave as σ (0)

α ∼ n4/(4�2)
and σ (1)

xy ∼ −n7/(4�4), such that we indeed find

RH = − 4

|e|n (T = 0, n → 0). (19)

It is remarkable that, although the conductivities have com-
pletely different forms in the quantum and semiclassical
regimes (in the latter, they read σ (0)

α ∼ n/� and σ (1)
xy ∼

−n/�2), the Hall constant is nevertheless independent of the
scattering and proportional to 1/n in both cases. With the aim
to determine the characteristic density nc at which RH crosses
over from the semiclassical regime to the quantum regime,
we plot in Fig. 4 the density dependence of the Hall factor,
superimposed with the density dependence of the chemical
potential. The Hall factor varies nonmonotonously between

r = 1 and r = 4 as n decreases, going through a maximum
when μ lies approximately

√
2� below the band edge. Hence,

the semiclassical to quantum crossover is associated with the
chemical potential approaching and crossing the bottom of the
noninteracting band. From the condition μ = −D, we deduce
an approximate expression for nc (see Appendix E 1):

nc = �

2π2a
√|txty|

[
1 + ln

(
2D

�

)]
. (20)

Hence, the quantum regime is reached at higher densi-
ties for larger scattering rates and more one-dimensional
geometries. These trends are visualized in Fig. 5, where the
zero-temperature Hall factor is displayed versus n, �, and
ty/tx. Upon going from isotropic 2D to quasi-1D, nc increases
and the quantum regime progressively expands. Around nc,
the density dependence of the conductivities σxx and σyy

crosses over from ∼ n4 to n and the Hall conductivity from
n7 to n. The steeper increase of σxy for n � nc explains the
appearance of a maximum in the n-dependence of the Hall
factor. We shall not describe this mechanism further here,
as a similar one occurs as a function of temperature and is
discussed at length below.

C. Temperature dependence

Since at zero temperature the strongest deviation from a
semiclassical Hall effect occurs when the chemical potential
lies slightly outside the noninteracting band, we also expect
an enhancement of the Hall factor when μ moves in the
vicinity of the band edge under the effect of temperature.
As we will see, this enhancement can reach several orders
of magnitude in our model. In models where the scattering
rate has a cutoff, a finite temperature will also drive μ below
the band if the density is sufficiently low, such that similar
effects could also possibly occur. Note that inelastic scattering
mechanisms usually lead to T -dependent self-energies. By
keeping the scattering rate � independent of T , we ensure that
the T -dependent effects we find are not due to changes in the
scattering. The study of T -dependent scattering models is left
for future works.

FIG. 5. Hall factor r = RH/R0
H at T = 0 and low electron density for three values of the anisotropy ty/tx . Dark blue corresponds to r = 1

and turquoise to r = 4. The semiclassical and quantum regimes are labeled with 1/n and 4/n, respectively. The solid (dotted) white lines
correspond to μ = −D (μ = −D − √

2�) and mark the beginning (approximate maximum) of the crossover between the semiclassical and
quantum regimes.
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FIG. 6. Typical temperature dependence of the conductivities
in the quantum regime (ty = 0.1tx , � = 0.01tx , n = 0.001/a). The
dashed lines show Eq. (21). The onset temperatures indicated by
arrows correspond to Eq. (22).

Starting at near-zero temperature, the conductivities and
the Hall constant vary initially slowly like T 2. In Fermi liq-
uids, the T 2 raise of the resistivity is due to the scattering rate
growing like (ε − μ)2. Here, since we assume an energy- and
temperature-independent self-energy, the T 2 dependence of
the conductivities stems from thermal excitations rather than
from the scattering rate. It occurs both in the semiclassical
and quantum regimes. However, whether the conductivities
increase or decrease like T 2 depends on the density (see
Appendix E 2). In the quantum regime n → 0, we find that
all conductivities increase with a coefficient proportional to
(n/�)2. In the semiclassical regime, the coefficient depends
on the slope and curvature of the transport function and can
have different signs in different directions. Figure 6 shows
the typical temperature variation of the conductivities in the
quantum regime. While σ (0)

x and σ (0)
y have nearly the same T 2

coefficient, the coefficient of σ (1)
xy is larger, consistent with the

asymptotic results given in Appendix E 2.
Strikingly, the conductivities shoot up by orders of mag-

nitude at well-defined onset temperatures that are different
for the x, y, and xy components. Below the onset, the Fermi
tails in Eqs. (14) and (16) do not overlap significantly with
the band, but only with the band tails resulting from the
convolution of the transport function with the second or third
power of the spectral function. Physically, the thermally ex-
cited carriers are very few, occupying the tail of the spectral
function. Above the onset, the Fermi tails overlap with the
band and the number of thermally excited carriers increases
strongly. As the figure shows, this occurs in a regime where
kBT > �, such that the spectral function is narrower than
the derivative of the Fermi function. Using this fact, and
linearizing the transport functions close to the band edge, as
appropriate at low density, we derive in Appendix E 2 approx-
imations for the conductivities in this regime:

σ (0)
α ≈ e2

h

a2
α

a

|tα|√|txty|
kBT

�
ln

(
1 + e

μ+D
kBT

)
, (21a)

σ (1)
xy ≈ −|e|3

h2
2πa

√|txty|kBT

�2
ln

(
1 + e

μ+D
kBT

)
. (21b)

To estimate the onset temperatures, we ignore the weak T 2

variation below the onset and determine the temperature
at which the above expressions equal the zero-temperature
conductivities. The resulting equations are simplified using
the fact that exp( μ+D

kBT ) � 1, allowing an explicit solution:

kBTα = δ − D

W
(

δ(δ−D)
|tα |(|txty|)1/2(πna)3

) , (22a)

kBTxy = δ − D

W
(

δ2(δ−D)
2(|txty|)3/2(πna)5

) . (22b)

Here W (·) is the Lambert function and we have defined δ =
2�/(πna). These temperatures are displayed in Fig. 6.

Figure 6 shows that Txy < Tx, Ty, which can be rationalized
as follows. According to Eq. (21), the conductivities behave as
σx,y ∼ I (T )/� and σxy ∼ I (T )/�2 above onset, with the same
temperature dependence I (T ) but different powers of �. The
T dependence follows from convolving the Fermi factor with
the linearized transport function:

∫ ∞
−D dε [− f ′(ε − μ)](ε +

D) = kBT ln[1 + exp( μ+D
kBT )]. The difference stems from the

sum rule for A2(E , ε) being ∼1/�, while the sum rule for
A3(E , ε) is ∼1/�2, which reflects the fact that A3(E , ε) is
narrower than A2(E , ε). Theses sum rules appear after con-
volving the transport functions with A2 and A3 in Eqs. (14)
and (16), respectively. On the other hand, we have seen that,
at T = 0 and in the quantum regime, the conductivities behave
as σx,y ∼ n4/�2 and σxy ∼ n7/�4. The equation for Tx,y is
therefore of the form I (T )/� = n4/�2, while the equation for
Txy is of the form I (T )/�2 = n7/�4. Since I (T ) increases
monotonically with increasing T , one sees that Txy < Tx, Ty,
provided that n3 < �. With all numeric and dimensional fac-
tors in place, this condition reads (πna)3 < �/|tx|. In the
regime, kBTxy > � where Eq. (22) was obtained, this condi-
tion is met if n < nc. We therefore expect that the relation
Txy < Tx, Ty is robust throughout the quantum regime.

At temperatures between Txy and Ty, the sharp increase
of σxy drives a correspondingly large increase of RH, since
the normal conductivities remain low. One expects a peak
in RH(T ) that reaches its maximum close to Ty. Evaluating
Eq. (21) at T = Ty, we obtain the following estimate for the
maximum Hall factor:

rmax ≈ 4�

|ty|(πna)3
. (23)

This can be huge in the low-density limit, especially for
a quasi-1D dispersion. Figure 7(a) displays RH(T ) in the
anisotropic case ty/tx = 0.1 with �/tx = 0.01 and at various
densities that scan from deep in the quantum regime up to
the crossover into the semiclassical regime (see Fig. 5). In
the quantum regime, r(T ) starts at the value 4, raises slowly
as T 2 (Appendix E 2), develops a strong maximum, and fi-
nally drops to the high-temperature value r(kBT  �) ≈ 1
(Appendix E 2). Consistently with Eq. (23), the height of
the maximum is very large at small n and drops rapidly as
n increases. Upon approaching the semiclassical regime, the
initial value r(0) grows (Fig. 5) and the maximum disappears.
Finally, deep in the semiclassical regime (not shown), r(T )
varies with almost no temperature dependence from a value
close to 1 at T = 0 to a value close to 1 at high temperature.
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FIG. 7. (a) Temperature dependence of the Hall factor r(T ) =
RH(T )/R0

H for ty = 0.1tx , � = 0.01tx , and various densities.
(b) Largest value of the temperature-dependent Hall factor versus
density for three values of the anisotropy ty/tx and three values of the
scattering rate �.

Figure 7(b) shows the maximum Hall factor determined
numerically versus n, for three values of ty and three values
of �. The power law ∼n−3 predicted by Eq. (23) is observed
at low n, while for larger n the behavior changes. The increase
of rmax with increasing � and decreasing ty is also qualitatively
consistent with Eq. (23).

IV. SUMMARY AND CONCLUSION

Measuring the Hall constant remains the number-one
experimental approach for determining the carrier density
of conductors, including correlated ones (see for instance
Ref. [39]). This is grounded in the universality of this prop-
erty, as predicted by the Boltzmann semiclassical theory of
transport. The conditions under which this universality breaks
down are not well-known. The semiclassical approach relies
on the carriers being true particles with fermionic statistics,
which is likely a good approximation when interactions are
weak and carrier density is sufficiently high. Deviations may
be expected at low density, even before the regime of Wigner
crystallization is reached, when the Fermi energy is compa-
rable with the scattering rate, because the carriers cannot be
treated as sharp quasiparticles. In this case, the semiclassical
theory gives way to the Kubo–Greenwood framework, but a
complete solution is generally out of reach. One exception, in

which a closed set of equations may be written for the Hall
constant, is the class of models, where nonlocal correlations
between the electrons are either absent, like in dynamical
mean-field theory, or negligible. We have collected these
equations in Sec. II, for the case of a 2D single-band system
in perpendicular magnetic field [Eqs. (2)–(6), and (14)–(17)].
Our goal is to explore the predictions of these equations in the
regime of low density, which is relevant in the present context
of flourishing research activity on gated 2D conductors.

As a first application, we have studied a minimal two-
parameters model. The first parameter, ty/tx, controls the
electronic dimensionality and allows one to study 2D to 1D
crossovers. The second, �/tx, controls the scattering. We have
studied r ≡ RH/R0

H as a function of density and temperature
and found deviations from the semiclassical regime character-
ized by r = 1. As a rule of thumb, the semiclassical behavior
is realized at higher dimensionality, weak scattering, high
density, and high temperature, while significant deviations are
found at low dimensionality, strong scattering, low density,
and low temperature. There are two kinds of deviations from
universality. At zero temperature, when the chemical poten-
tial moves outside the noninteracting band, the Hall constant
crosses over from 1/n to 4/n. This quantitative change does
not completely break the universality, in the sense that the
Hall constant remains asymptotically independent of band
structure and scattering rate. However, the crossover region is
nonuniversal, depending on both band structure and scattering
rate [see Eq. (20)]. A second kind of deviation arises at finite
temperature, when thermally excited carriers—–that were at
lower temperatures confined to interaction-induced tails of the
DOS—begin to occupy the extreme levels of the noninteract-
ing band. The ensuing boost of conductivity, that occurs first
for the Hall conductivity, produces a peak in the Hall factor r.

This model is peculiar in that the scattering rate has no
dependence on the energy, which allows charge carriers to
exist at arbitrary energies below the free-carrier band. In a
way, it may be seen as the simplest generalization of the Boltz-
mann theory in the isotropic relaxation time approximation: It
reduces to the latter in the semiclassical regime, and allows
one to describe the crossover into the quantum regime with-
out additional parameters. This circumstance enables good
analytical and numerical control of the equations as well as
exact asymptotic expressions but may also lead to peculiar
results. Nevertheless, the model has the merit of showing
that significant deviations from the universal Hall constant
paradigm can occur at low density and gives a first hint
on where to search the strongest deviations: in conditions
where the chemical potential varies in the vicinity of the
free-carrier band edge. Of course, how the energy depen-
dence of the self-energy would influence the low-density
Hall constant is an intriguing open question that is left for
future work.

The peak in the temperature-dependent Hall factor could be
searched in known 2D materials. With the typical values a =
(4 Å)2, tx = 100 meV, and � = 2 meV, Eq. (20) gives nc =
4 × 1012 cm−2 in the least favorable isotropic case. Hence the
quantum regime is well within the range of carrier concen-
trations that can be achieved with the field-effect technology.
Assuming n = 1012 cm−2, Eq. (22) gives Tx = 278 K and
Eq. (23) gives rmax ≈ 6 × 105. The exact values given by the
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model are Tx = 319 K and rmax = 1.1 × 105. At that temper-
ature, the conductivity is, however, very small: σx ∼ 10−4 µS.
Of course, it is not obvious that the predictions of the model
should be trusted when applied to real materials, in which the
self-energy surely has a complex energy dependence. Further
studies are therefore needed, using realistic band structures
and self-energies inspired by microscopic models of interact-
ing electrons.

The codes written and the data generated for this study are
available at Ref. [40].
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APPENDIX A: CURRENT-CURRENT
CORRELATION FUNCTION

In this Appendix, we describe the steps leading to Eqs. (10)
and (11). We also list a few symmetries of the transport func-
tion αβ (E1, E2, B), that are useful to establish the symmetry
properties of the conductivity tensor.

The local current density is given by the functional deriva-
tive of the Hamiltonian, Eq. (1), with respect to the vector
potential: jα (r) = −δH/δAα (r)|E=0. The functional deriva-
tive is evaluated at E = 0 because the Kubo formula gives the
linear response to the electric field. It is therefore convenient
to split the vector potential as A = Ael + Amag, where Ael

is irrotational and vanishes for E = 0, while ∇ × Amag = B.
The interaction Hint being independent of the vector potential,
the functional derivative is straightforward and yields the total
current,

Jα = − i|e|
h̄

∑
r1r2σ

(r2 − r1)αt0
r1r2

eiAr1r2 c†
r1σ

cr2σ
, (A1)

with Ar1r2 = |e|
h̄

∫ r2

r1
dr · Amag(r). The retarded correlation

function, Eq. (8), is the analytic continuation of the corre-
sponding Matsubara function: CR

JαJβ
(ω) = CJαJβ

(i�n → h̄ω +
i0) [29]. Here �n = 2nπkBT are even Matsubara frequencies
and CJαJβ

(i�n) = ∫ 1/kBT
0 dτ ei�nτCJαJβ

(τ ) with the imaginary-
time function CJαJβ

(τ ) = −〈Tτ Jα (τ )Jβ (0)〉 given explicitly by

CJαJβ
(τ ) =

( e

h̄

)2 ∑
r1r2σ

∑
r3r4σ ′

(r2 − r1)αt0
r1r2

(r4 − r3)βt0
r3r4

× eiAr1r2 eiAr3r4
〈
Tτ c†

r1σ
(τ )cr2σ

(τ )c†
r3σ ′ (0)cr4σ ′ (0)

〉
.

(A2)

Tτ indicates imaginary-time ordering and 〈 · · · 〉 a thermal av-
erage with respect to H at E = 0 and finite B. The assumption
of local correlations in a paramagnetic state implies that the
thermal average factorizes as〈

Tτ c†
r1σ

(τ )cr2σ
(τ )c†

r3σ ′ (0)cr4σ ′ (0)
〉

= 〈
Tτ c†

r1σ
(τ )cr4σ ′ (0)

〉〈Tτ cr2σ
(τ )c†

r3σ ′ (0)〉
= −δσσ ′G(r4, r1,−τ )G(r2, r3, τ ),

where G(r1, r2, τ ) = −〈Tτ cr1σ
(τ )c†

r2σ
(0)〉 is the interacting

single-particle Green’s function.
The Green’s function as defined above isn’t gauge invariant

and breaks translational symmetry in the presence of a finite
(spatially uniform) magnetic field. Indeed, a change of the
electromagnetic gauge modifies the Peierls phase according
to Ar1r2 → Ar1r2 + χ (r2) − χ (r1), where χ (r) is the gauge.
The gauge invariance of the Hamiltonian requires that the
field operators change as crσ → e−iχ (r)crσ . Hence, the Green’s
function changes as G(r1, r2, τ ) → G(r1, r2, τ )ei[χ (r2 )−χ (r1 )].
Let us therefore introduce a modified Green’s function [16,41]

Ḡ(r1 − r2, τ ) = e−iAr1r2 G(r1, r2, τ ), (A3)

which is manifestly gauge invariant [42]. Thanks to its transla-
tion invariance in space and time, Ḡ admits the Fourier repre-
sentation Ḡ(r, τ ) = kBT

N

∑
k

∑
iωn

Ḡ(k, iωn)ei(k·r−ωnτ ), where
N is the number of k points and ωn = (2n + 1)πkBT are odd
Matsubara frequencies. Introducing this in Eq. (A2), we get

CJαJβ
(i�n) = −

( e

h̄

)2 1

N2

∑
kqσ

kBT
∑
iωn

Ḡ(k, iωn)Ḡ(k + q, iωn + i�n)
∑

r1r2r3r4

eik·(r4−r1 )ei(k+q)·(r2−r3 )

× (r2 − r1)αt0
r1r2

(r4 − r3)βt0
r3r4

ei(Ar1r2 +Ar3r4 +Ar4r1 +Ar2r3 ).

This correlation function is gauge invariant because the quan-
tity Ar1r2 + Ar2r3 + Ar3r4 + Ar4r1 is proportional to the mag-
netic flux threading the oriented tetragon defined by the
points (r1, r2, r3, r4), and is therefore independent of the
gauge:

Ar1r2 + Ar2r3 + Ar3r4 + Ar4r1 = |e|
2h̄

B · (r1 − r3) × (r2 − r4).

(A4)
This is readily verified, for instance, in the symmetric gauge
Amag(r) = B

2 (−y, x, 0), where Ar1r2 = |e|B
2h̄ (r1xr2y − r1yr2x ) =

|e|
2h̄ B · (r1 × r2).

The Green’s function admits an integral representation in
terms of its spectral function:

Ḡ(k, iωn) =
∫ ∞

−∞
dε

Ā(k, ε)

iωn + μ − ε
. (A5)

Ā(k, ε) contains the fractal Hofstadter physics and cannot be
expanded in powers of B. However, because the Hofstadter
spectrum is even in B, one can conclude that Ā(k, ε) formally
deviates from its value at B = 0 by corrections of order B2.
Up to first order in B, it is therefore sufficient to replace
Ā(k, ε) by its zero-field value, which is A(Ek, ε) given in
Eq. (2). After inserting the spectral representation of Ḡ,
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standard techniques allow one to perform the sum over odd
Matsubara frequencies [29]. A further shift of k by −q/2
to achieve a more symmetric form and introduction of the
relative vectors ρ1 = r2 − r1, ρ2 = r4 − r3, and r = r1 − r3

directly leads to Eqs. (10) and (11).
The transport function defined in Eq. (11) obeys the fol-

lowing symmetries:

αβ (E1, E2, B) = ∗
αβ (E1, E2,−B), (A6a)

αβ (E1, E2, B) = ∗
αβ (E2, E1, B), (A6b)

αβ (E1, E2, B) = βα (E2, E1, B). (A6c)

The first may be checked by changing (r, ρ1, ρ2) into
(−r,−ρ1,−ρ2); the second by changing (q, ρ1, ρ2, r) into
(−q,−ρ1,−ρ2, r + ρ1 − ρ2); and the third by changing
(q, ρ1, ρ2, r) into (−q, ρ2, ρ1,−r). Using these symmetries,
one verifies that σαβ (ω, B) = σ ∗

βα (−ω,−B). In the dc limit,
this gives the Onsager-Casimir relation σαβ (B) = σβα (−B)
[43,44]. Equation (A6a) implies that Re αβ (E1, E2, B) and
Im αβ (E1, E2, B) are even and odd functions of B, respec-
tively, which fixes the parity of Eqs. (12) and (13) in the
field. Equation (A6c) furthermore implies that σ

(e)
βα (B) =

σ
(e)
αβ (B) and σ

(o)
βα (B) = −σ

(o)
αβ (B). The latter shows that the part

odd in the field is antidiagonal, σ (o)
αα (B) = 0. Making use of

σxy = −σyx, the former shows that the even part is diagonal:
σ

(e)
αβ (B) ∝ δαβ .

APPENDIX B: WEAK-FIELD EXPANSION
OF THE DC CONDUCTIVITY

The magnetic field dependence of the dc conductivity de-
fined by Eqs. (9)–(11) stems from the quantity

�(q, ρ, B) = 1

N

∑
r

eiq·re− i|e|
2h̄ Bẑ·ρ×r. (B1)

Its zero-field limit gives a Kronecker symbol at q = 0:

�(q, ρ, 0) = 1

N

∑
r

eiq·r = δq0. (B2)

The transport function at this order is, therefore,

αβ (E1, E2, 0) = −
( e

h̄

)2 1

V

∑
kσ

δ(E1 − Ek)δ(E2 − Ek)

×
∑
ρ1ρ2

ρ1αt0
ρ1

eik·ρ1ρ2βt0
ρ2

eik·ρ2 .

Introducing the group velocity vkα = (1/h̄)∂Ek/∂kα , we can
substitute

∑
ρ ραt0

ρ eik·ρ by −ih̄vkα . Since we only consider
systems with the inversion symmetry Ek = E−k, the compo-
nents of the group velocity are odd functions of k. Hence, αβ

vanishes by symmetry if α �= β and we have

αβ (E1, E2, 0) = δαβδ(E1 − E2)e2 1

V

∑
kσ

v2
kαδ(E1 − Ek),

which corresponds to Eq. (15).
At first order in B, we have

d

dB
�(q, ρ, B)

∣∣∣∣
B=0

= −|e|
2h̄

ẑ · ρ × ∇q
1

N

∑
r

eiq·r. (B3)

This formally involves the gradient of the Kronecker
symbol δq0, which is only well-defined after taking
the continuum limit for the momenta. Implying this
limit, we evaluate the q sum in Eq. (11) by parts as∑

q F (q)∇qδq0 = −∑
q δq0∇qF (q) = −∇qF (q)|q=0. Upon

calculating dαβ (E1, E2, B)/dB at B = 0, the ∇q yields one
term from acting on the phase factors and two terms from
acting on the Dirac delta functions. The former vanishes, as it
is proportional to (ρ1 − ρ2) × (ρ1 − ρ2). We get

d

dB
αβ (E1, E2, B)

∣∣∣∣
B=0

= i|e|3h̄

4

1

V

∑
kσ

[δ′(E1 − Ek)δ(E2 − Ek) − δ(E1 − Ek)δ′(E2 − Ek)]

×
(

vkxvkβ

mkyα
− vkyvkβ

mkxα
− vkαvkx

mkyβ
+ vkαvky

mkxβ

)
, (B4)

where δ′ stands for the derivative of the Dirac delta and
the mass tensor 1/mkαβ = (1/h̄2)∂2Ek/(∂kα∂kβ ) has been
introduced. This result is purely imaginary and thus only
contributes to σ

(o)
αβ (B), as expected. It is also odd under

the exchange of α and β and vanishes as it should if
α = β.

When Eq. (B4) is inserted in Eq. (13), the result-
ing E1 or E2 integral involving δ′ can be evaluated by
parts using, for instance,

∫ ∞
−∞ dE1 δ′(E1 − Ek)A(E1, ε) =

− ∫ ∞
−∞ dE1 δ(E1 − Ek)A′(E1, ε), with A′(E , ε) denoting the

derivative of the spectral function with respect to the first
argument. Upon performing this substitution, we encounter
the integral

I =
∫ ∞

−∞
dε1dε2

f (ε1 − μ) − f (ε2 − μ)

(ε1 − ε2)2

× [A(E , ε1)A′(E , ε2) − A′(E , ε1)A(E , ε2)].

Remarkably, if the spectral function is causal, this integral can
be recast as

I = 4π2

3

∫ ∞

−∞
dε [− f ′(ε − μ)]A3(E , ε). (B5)

This leads to Eqs. (16) and (17). To prove Eq. (B5), we rewrite

I = 2
∫ ∞

−∞
dε1 f (ε1 − μ)A(E , ε1)

∫ ∞

∞
dε2

A′(E , ε2)

(ε1 − ε2)2

− 2
∫ ∞

−∞
dε1 f (ε1 − μ)A′(E , ε1)

∫ ∞

∞
dε2

A(E , ε2)

(ε1 − ε2)2
,

where a principal value is understood in the ε2 integrals.
We now use the causality of the self-energy, which implies
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(and requires)

Re G(E , ε1) =
∫ ∞

∞
dε2

A(E , ε2)

ε1 − ε2
,

d

dε1
Re G(E , ε1) = −

∫ ∞

∞
dε2

A(E , ε2)

(ε1 − ε2)2
,

with G(E , ε) the retarded Green’s function. It follows that

I = − 2
∫ ∞

−∞
dε f (ε − μ)

×
[

A(E , ε)
d

dε
Re G′(E , ε) − A′(E , ε)

d

dε
Re G(E , ε)

]
︸ ︷︷ ︸

= −2π2

3

d

dε
A3(E , ε).

We have used Eq. (2) and the explicit form of the Green’s
function, G(E , ε) = 1/[ε − E − �(ε)]. An integration by
parts then gives Eq. (B5).

APPENDIX C: RELATION WITH
THE SEMICLASSICAL THEORY

The Boltzmann expressions in the isotropic relaxation-time
approximation may be derived from Eqs. (14)–(17) under the
assumptions that (i) the spectral function is narrower than
the derivative of the Fermi distribution, such that − f ′(ε − μ)
may be replaced by − f ′(E − μ) and (ii) the self-energy
takes the form �(ε) = −ih̄/(2τ ), where τ is the relaxation
time. Using the identities

∫ ∞
−∞ dε A2(E , ε) = 1/(2π�) and∫ ∞

−∞ dε A3(E , ε) = (3/2)/(2π�)2, one thus arrives at the ap-
proximations

σ (0)
α ≈ e2

∑
kσ

[− f ′(Ek − μ)]τv2
kα

σ (1)
xy ≈ −|e|3

∑
kσ

[− f ′(Ek − μ)]τ 2

×
[

1

2

(
v2

kx

mkyy
+ v2

ky

mkxx

)
− vkxvky

mkxy

]
,

which, apart from the (x, y) symmetrization at the last line,
coincide with the semiclassical formula given in the literature
[9,33,34].

APPENDIX D: EXACT INTEGRALS FOR THE CASE
�(ε) = −i�

The self-energy �(ε) = −i� obeys causality because the
Kramers–Kronig transform of a constant is zero. Consistently,
the spectral function A(E , ε) = �/π

(ε−E )2+�2 is properly normal-

ized to
∫ ∞
−∞ dε A(E , ε) = 1. The integrals that involve the

Fermi distribution and the spectral function have a closed
form in terms of polygamma functions ψn(z), where z =
1
2 − i E−μ+i�

2πkBT . The ε integral in Eq. (3) reads∫ ∞

−∞
dε f (ε − μ)A(E , ε) = 1

2
+ 1

π
Im ψ0(z)

= 1

2
− 1

π
tan−1

(
E − μ

�

)
(T = 0).

The integrals appearing in Eqs. (14) and (16) are trivial at T =
0 and otherwise read∫ ∞

−∞
dε [− f ′(ε − μ)]A2(E , ε)

= ζ

2(π�)2
Re[ψ1(z) − ζψ2(z)]∫ ∞

−∞
dε [− f ′(ε − μ)]A3(E , ε)

= 3ζ

8(π�)3
Re

[
ψ1(z) − ζψ2(z) + ζ 2

3
ψ3(z)

]
,

where ζ = �
2πkBT .

APPENDIX E: EXACT ASYMPTOTIC RESULTS
AND APPROXIMATIONS

1. T = 0

At zero temperature, the transport equations are

n =
∫ ∞

−∞
dE N0(E )

[
1

2
− 1

π
tan−1

(
E − μ

�

)]
,

σ (0)
α = π h̄

∫ ∞

−∞
dE (0)

α (E )A2(E , μ),

σ (1)
xy = h̄

∫ ∞

−∞
dE (1)(E )A3(E , μ).

In the semiclassical regime, where � is the smallest energy
scale, the transport functions may be expanded around E = μ.
The leading terms give

σ (0)
α = π h̄(0)

α (μ)
∫ ∞

−∞
dE A2(E , μ) = h̄

2�
(0)

α (μ),

σ (1)
xy = h̄(1)(μ)

∫ ∞

−∞
dE A3(E , μ) = 3h̄

8π2�2
(1)(μ).

This leads to Eq. (18) of the main text. To estimate the
crossover density in Fig. 5, we fix μ = −D in the equa-
tion giving the density. Since the term in square brackets drops
rapidly for energies away from the band edge, we can use the
approximation

nc ≈ N0(−D)
∫ D

−D
dE

[
1

2
− 1

π
tan−1

(
E + D

�

)]

= �

2π2a
√|txty|

[
1 + ln

(
2D

�

)
+ O

(
�2

D2

)]
.

In the quantum regime, where n approaches zero at finite �,
we can expand the equations for μ → −∞:

n =
∫ ∞

−∞
dE N0(E )

[
− �

πμ
− �E

πμ2
+ O

(
1

μ3

)]
,

σ (0)
α = π h̄

∫ ∞

−∞
dE (0)

α (E )

[
�2

π2μ4
+ 4�2E

π2μ5
+ O

(
1

μ6

)]
,

σ (1)
xy = h̄

∫ ∞

−∞
dE (1)(E )

[
�3

π3μ6
+ 6�3E

π3μ7
+ O

(
1

μ8
,

E2

μ8

)]
.
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Considering the symmetry of the DOS and transport func-
tions, the relevant moments are∫ ∞

−∞
dE N0(E ) = 2

a
,

∫ ∞

−∞
dE (0)

α (E ) =
( e

h̄

)2 4a2
αt2

α

a
,

∫ ∞

−∞
dE E (1)(E ) =

( |e|
h̄

)3 16π2

3
at2

x t2
y ,

where ax and ay are the lattice parameters and a = axay.
Hence, we arrive at

n = −1

a

2�

πμ
+ O (1/μ3),

σ (0)
α = e2a2

αt2
α

h̄a

4�2

πμ4
+ O (1/μ6),

σ (1)
xy = |e|3at2

x t2
y

h̄2

32�3

πμ7
+ O (1/μ9),

which leads to Eq. (19).

2. T > 0

At low temperature, we rely on a Sommerfeld expansion.
For the density in Eq. (3), we integrate by parts to let the
quantity − f ′(ε − μ) appear. We change variables from ε

to u = (ε − μ)/(kBT ), expand the integrand in powers of
T , and perform the integrals using

∫ ∞
−∞ du eu

(eu+1)2 {1, u, u2} =
{1, 0, π2/3}. The condition n(T ) = n(0) allows us to deduce
μ′(0) = 0, where μ′(0) is the first derivative of the chemical
potential with respect to kBT . A closed expression for the
second derivative can also be deduced in the low-density
regime, after sending μ0 ≡ μ(T = 0) to −∞ and using the
relation μ0 = −2�/(πna) derived above. This expression is
μ′′(0) = −π3na/(3�). Proceeding similarly with Eqs. (14)
and (16), we arrive at the relations

σ (0)
α (T )

σ
(0)
α (0)

= 1 + π4

2�2
(na)2(kBT )2,

σ (1)
xy (T )

σ
(1)
xy (0)

= 1 + 7π4

4�2
(na)2(kBT )2,

r(T )

r(0)
= 1 + 3π4

4�2
(na)2(kBT )2,

which are valid for T → 0 and n → 0 at finite �. At higher
density, when μ0 lies inside the band, instead of the expansion
around μ0 = −∞ we expand the transport functions around
E = μ0. Thus, we find μ′′(0) = −(π2/3)N ′

0(μ0)/N0(μ0) and,
for the conductivities,

σ (0)
α (T )

σ
(0)
α (0)

=1− π2

6

[
N ′

0(μ0)

N0(μ0)

(0)
α

′(μ0)


(0)
α (μ0)

− (0)
α

′′(μ0)


(0)
α (μ0)

]
(kBT )2,

σ (1)
xy (T )

σ
(1)
xy (0)

=1− π2

6

[
N ′

0(μ0)

N0(μ0)

(1)′(μ0)

(1)(μ0)
− (1)′′(μ0)

(1)(μ0)

]
(kBT )2.

We estimate the onset temperatures Tx, Ty, and Txy in Fig. 6 as
follows. In the regime � < kBT � D, the spectral function is
narrower than the derivative of the Fermi function. We there-
fore replace in Eqs. (14) and (16) f ′(ε − μ) by f ′(E − μ),
such that the ε integrals become trivial. With the low-density
regime in mind, we further note that for kBT � D, the func-
tion f ′(E − μ) is sharp compared with the transport function
and peaked near the band bottom. We therefore replace the
transport functions by their linearizations close to the band
bottom, which are indicated in the legend of Fig. 2. We thus
arrive at Eq. (21).

We close this Appendix by showing that, in the high-
temperature regime � � kBT < D, the Hall constant recovers
approximately the classical value Eq. (18), irrespective of
the density. In that regime, we can replace f ′(ε − μ) by
f ′(E − μ) because the derivative of the Fermi function is
broad compared with the spectral function, and we can
replace the transport function by its value at E = μ be-
cause the derivative of the Fermi function is still much
sharper than the transport function. This directly leads to the
result

RH ≈ 3

2π2h̄

(1)(μ)


(0)
x (μ)(0)

y (μ)
(� � kBT < D),

which is the same as the zero-temperature Hall constant for
� → 0.
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