Mapping electronic phase coexistence in nickelate superlattices by STEM-EELS

Bernat Mundet,1,2 Duncan T.L. Alexander,2 Claribel Dominguez,1 Jennifer Fowlie,1 Marta Gibert,3 and Jean-Marc Triscone1

1 DQMP University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
2 Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
3 Physik-Institut, University of Zurich, Zurich, Switzerland

To study the electronic couplings that are established at the coherent interfaces of epitaxial heterostructures, and their characteristic length-scales, novel characterization techniques capable of mapping electronic phase coexistence at the atomic-scale level are required. Here, we show that scanning transmission electron microscopy in combination with electron energy-loss spectroscopy (STEM-EELS) can be used to map electronic phase coexistence in rare-earth nickelate materials, a system whose physical properties are determined by a strong interplay between its structural, magnetic and electronic properties [1]. The feasibility of the experiment is demonstrated by using two (NdNiO$_3$/SmNiO$_3$) superlattices (SLs) whose constituent SmNiO$_3$ layers are either insulating or metallic at room temperature depending on their corresponding layer thickness [2]. By tracing the changes appearing in the O K and Ni L edge fine structures across both SL, we are able to map their metallic and insulating regions, and to further estimate the width associated to the metallic/insulating boundaries [3].