Record-high upper critical field in MgB$_2$ bulk samples prepared by a non-conventional rapid synthesis route

Marco Bonura,1 Davide Matera,1 Gianmarco Bovone,1 Enrico Giannini,1 Radovan Černý,1 Siobhan McKeown Walker,1,2 Xavier Chaud,3 and Carmine Senatore1

1 DQMP, University of Geneva, Geneva, Switzerland
2 Laboratory of Advanced Technology (LTA), Geneva, Switzerland
3 French National High Magnetic Field Laboratory (LNCMI), Grenoble, France

The upper critical field (B_{c2}) sets the thermodynamic limit to the superconductivity. In the case of the MgB$_2$ superconductor, a big gap is present between B_{c2} values measured in bulk samples and in thin films, where B_{c2} can be as high as \sim 50 T at 4.2 K. Filling this gap would unlock the potential of MgB$_2$ for magnet applications, which is much wished by the applied-superconductivity community because of its low cost and relatively high critical temperature, close to 40 K. This work presents the results of an extensive experimental campaign that was guided by a Design of Experiment and demanded the preparation and characterization of \sim 50 samples. We measured and modeled the dependence of the upper critical field on the main synthesis parameters and established a new record for B_{c2} (\sim 35 T measured at 4.2 K) by tuning the structural disorder in C-doped samples prepared by a non-conventional rapid synthesis route [1]. The idea behind is that rapid heating and cooling may freeze the system in configurations with high structural disorder as in the case of thin films. Indeed, X-ray diffraction and X-ray photoelectron spectroscopy analyses demonstrate that the rapid-synthesis route allows levels of C substitution in the B sites not attainable with conventional manufacturing routes for bulk samples. However, the achieved record appears to be an upper boundary for B_{c2} in bulk samples. Structural disorder in films seems to be able to act selectively on one of the two bands where the superconductivity in MgB$_2$ takes place: this enhances B_{c2} while reducing T_c only by a few Kelvins. On the other hand, the critical temperature in bulk samples decreases monotonically when the structural disorder increases, and this imposes a limit to the maximum achievable B_{c2}.