Fermi surface and quasiparticle dispersion of the highly-conductive perovskite oxide SrMoO$_3$

Edoardo Cappelli, 1 Alexander Hampel, 2 Milan Radovic, 3 Flavio Y. Bruno, 4 Anna Tamai, 1 Antoine Georges, 5,2,6,1 and Felix Baumberger 1,3

1 Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
2 Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth avenue, New York, NY 10010, USA
3 Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
4 GFMC, Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
5 Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
6 CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France

SrMoO$_3$ single-crystals have the lowest room-temperature resistivity of any transition-metal oxide [1]. This remarkable material has therefore attracted substantial interest for its possible uses as an electrode in oxide-electronics applications [2–5]. Electrical conduction in SrMoO$_3$ arises from the 2 itinerant electrons in the Mo 4d t_{2g} shell [6]. This makes SrMoO$_3$ the particle-hole-symmetric counterpart to the ruthenate SrRuO$_3$, with 2 holes in the Ru 4d t_{2g} shell. The room-temperature resistivity of the latter is, however, more than one order of magnitude higher [7] and existing estimates for the effective masses hint to a markedly different strength of correlations in these two compounds. The reason for this remarkable difference is not known. Here, I will present our ARPES investigation of bulk-like SrMoO$_3$ thin films grown by pulsed-laser deposition. Our synchrotron measurements establish the full 3D electronic structure of SrMoO$_3$ and yield quantitative information about the quasi-particle (QP) band dispersion. We determine QP self-energies and compare our results to dynamical mean-field calculations, which provides new insight into the puzzle of the low resistivity of SrMoO$_3$.