Aller au contenu directement
  • Home
  • Research
  • Ferroelectric ultrathin films and superlattices

Ferroelectric ultrathin films and superlattices

In ferroelectric ultrathin films, the depolarization field arising from bound charges on the surface of the film and at the interface with the substrate can be partially screened by free charges. In the absence of sufficient free charges, a ferroelectric has several ways of minimizing its energy whilst preserving its polar state, e.g., by forming domains of opposite polarization, or rotating the polarization into the plane of the thin ferroelectric slab [1]. Combining the effect of these electrostatic boundary conditions with the mechanical constraint imposed on a thin film allows for the formation of a large variety of domain structures with fascinating properties. These domain structures not only change the properties of the ferroelectric itself, but can also be used to change the properties of other materials through electrostatic and structural coupling. We study the structure and properties of domain walls in PbTiO3 ferroelectric thin films, based on the great experience the group has acquired over the years in the deposition and study of PbTiO3 ferroelectric thin films, superlattices and solid solutions [1–23]. We can control the intrinsic domain pattern by changing the electrostatic boundary configuration and film thickness [2, 7, 19, 20], the deposition temperature [23], and the epitaxial strain of the substrate. Based on this know-how in sample preparation and control of domain configuration in ferroelectric thin films, we now concentrate our attention on the properties of the domain walls themselves, using different techniques such as x-ray diffraction, atomic force microscopy and transmission electron microscopy.

A few related publications:

[1]  C. Lichtensteiger and J. M. Triscone. “Investigation of ferroelectricity in ultrathin PbTiO3 films”. In: Integrated Ferroelectrics 61 (2004), pp. 143–148.

[2]  C. Lichtensteiger, J. M. Triscone, J. Junquera, and P. Ghosez. “Ferroelectricity and tetragonality in ultrathin PbTiO3 films”. In: Physical Review Letters 94.4 (2005).

[3]  M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. Rabe, and J.-M. Triscone. “Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices”. In: Physical Review Letters 95.17 (2005).

[4]  L. Despont, C. Lichtensteiger, F. Clerc, M. G. Garnier, F. J. Garcia De Abajo, M. A. Van Hove, J. M. Triscone, and P. Aebi. “X-ray photoelectron diffraction study of ultrathin PbTiO3 films”. In: European Physical Journal B 49.2 (2006), pp. 141–146.

[5]  L. Despont, C. Koitzsch, F. Clerc, M. Garnier, P. Aebi, C. Lichtensteiger, J.-M. Triscone, F. Garcia De Abajo, E. Bousquet, and P. Ghosez. “Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films”. In: Physical Review B – Condensed Matter and Materials Physics 73.9 (2006).

[6]  M. Dawber, C. Lichtensteiger, P. Paruch, and J. M. Triscone. “Advanced fabrication and characterization of epitaxial ferroelectric thin films and multilayers”. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 53.12 (2006), pp. 2261–2269.

[7]  C. Lichtensteiger, M. Dawber, N. Stucki, J.-M. Triscone, J. Hoffman, J.-B. Yau, C. Ahn, L. Despont, and P. Aebi. “Monodomain to polydomain transition in ferroelectric PbTiO3 thin films with La0.67Sr0.33MnO3 electrodes”. In: Applied Physics Letters 90.5 (2007).

[8]  M. Dawber, N. Stucki, C. Lichtensteiger, S. Ganglio, P. Ghosez, and J. M. Triscone. “Tailoring the properties of artificially layered ferroelectric superlattices”. In: Advanced Materials 19.23 (2007), pp. 4153–4159.

[9]  K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn, and J. M. Triscone. “Modern physics of ferroelectrics: Essential background”. In: Topics in Applied Physics. Vol. 105. Springer, 2007, pp. 1–30.

[10]  C. Lichtensteiger, M. Dawber, and J. M. Triscone. “Ferroelectric size effects”. In: Topics in Applied Physics. Vol. 105. Springer, 2007, pp. 305–338.

[11]  M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, and J. M. Triscone. “New phenomena at the interfaces of very thin ferroelectric oxides”. In: Journal of Physics Condensed Matter 20.26 (2008).

[12]  M. Dawber, C. Lichtensteiger, and J. M. Triscone. “Phase transitions in ultra-thin ferroelectric films and fine period multilayers”. In: Phase Transitions 81.7-8 (2008), pp. 623–642.

[13]  E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez. “Improper ferroelectricity in perovskite oxide artificial superlattices”. In: Nature 452.7188 (2008).

[14]  P. Zubko, N. Stucki, C. Lichtensteiger, and J. M. Triscone. “X-ray diffraction studies of 180◦ ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field”. In: Physical Review Letters 104.18 (2010).

[15]  A. Torres-Pardo, A. Gloter, P. Zubko, N. Jecklin, C. Lichtensteiger, C. Colliex, J. M. Triscone, and O. Stéphan. “Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit- cell scale”. In: Physical Review B – Condensed Matter and Materials Physics 84.22 (2011).

[16]  C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-Puente, J. M. Triscone, P. Ghosez, and J. Junquera. “Ferro- electricity in Ultrathin-Film Capacitors”. In: Oxide Ultrathin Films: Science and Technology. Ed. by G. Pacchioni and S. Valeri. Wiley, 2012. Chap. 12: Ferroe, pp. 265–230.

[17]  P. Zubko, N. Jecklin, N. Stucki, C. Lichtensteiger, G. Rispens, and J. M. Triscone. “Ferroelectric domains in PbTiO3/SrTiO3 superlattices”. In: Ferroelectrics 433.1 (2012), pp. 127–137.

[18]  P. Zubko, N. Jecklin, A. Torres-Pardo, P. Aguado-Puente, A. Gloter, C. Lichtensteiger, J. Junquera, O. Stéphan, and J.-M. Triscone. “Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices”. In: Nano Letters 12.6 (2012).

[19]  C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J. M. Triscone. “Tuning of the depolarization field and nanodomain structure in ferroelectric thin films”. In: Nano Letters 14.8 (2014), pp. 4205–4211.

[20]  C. Lichtensteiger, C. Weymann, S. Fernandez-Pena, P. Paruch, and J. M. Triscone. “Built-in voltage in thin ferroelectric PbTiO3 films: The effect of electrostatic boundary conditions”. In: New Journal of Physics 18.4 (2016).

[21]  S. Fernandez-Peña, C. Lichtensteiger, P. Zubko, C. Weymann, S. Gariglio, and J. M. Triscone. “Ferroelectric domains in epitaxial PbxSr1- xTiO3 thin films investigated using X-ray diffraction and piezoresponse force microscopy”. In: APL Materials 4.8 (2016).

[22]  C. Weymann, C. Lichtensteiger, S. Fernandez-Peña, K. Cordero-Edwards, and P. Paruch. “Improved thin film growth using Slow Kinetics Intermittent Sputtering”. In: Applied Surface Science 516 (2020).

[23]  C. Weymann, C. Lichtensteiger, S. Fernandez-Peña, A. B. Naden, L. R. Dedon, L. W. Martin, and P. Paruch. “Full control of polarisation in ferroelectric thin films using growth temperature to modulate defects”. In: Advanced Electronic Materials 2000852 (2020).